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Abstract

This paper presents a novel formulation for the popu-
lar factorisation based solution for Structure from Motion.
Since our measurement matrices are populated with incom-
plete and inaccurate data, SVD based total least squares so-
lution are less than appropriate. Instead, we approach the
problem as a non-linear unconstrained minimisation prob-
lem on the product manifold of the Special Euclidean Group
(SE3). The restriction of the domain of optimisation to the
SE3 product manifold not only implies that each intermedi-
ate solution is a plausible object motion, but also ensures
better intrinsic stability for the minimisation algorithm. We
compare our method with existing state of art, and show that
our algorithm exhibits superior performance.

1. Introduction
A favoured technique by researchers for computing Struc-

ture from Motion (SfM) solution is the factorisation scheme
originally proposed in [8]. The central premise behind this
approach is that a measurement matrix P populated by stack-
ing up 2D point tracks of N feature points over a tempo-
ral window of F consecutive frames is rank limited. Fur-
ther, an optimal r-rank approximation of P with respect to
the Frobenius norm can be found out using a SVD-based
scheme, by factoring P into to two sub-matrices, R (Rota-
tion+Translation) and S (Shape) of size 2F × r and N × r

respectively.

P2F×N = R2F×rS
T
N×r (1)

However, this method is conditioned on having a fully
populated measurement matrix and the nature of noise
present to be isotropic Gaussian. Unfortunately, in prac-
tice, most state-of-art trackers can only provide incomplete
(occlusion) and inaccurate (transducer limits) point tracks if
placed in an unstructured environment. Inspite of the more
advanced schemes, and robustification techniques introduced
subsequently, filling the incomplete data still remains a tax-
ing problem to handle.

More promising schemes usually find the minimiser of
weighted reprojection error, given by

f(R, S) = ||W� (P− RST )||2Frobenius (2)

Here � is the Hadamard product (C = A � B : cij = aijbij),
and W is a weight matrix of the same size as P. Zeros corre-
spond to the missing elements of P and a non-zero entry is a
normalised trust factor for the corresponding observation.

Unfortunately, it turns out that reprojection error based
objective functions are optimal merely from a statistical
point of view, but not from a geometrical point of view ( [4],
also see §Sec. 4). Besides, previous empirical studies [1]
have indicated that in most cases the error surfaces swept by
Eq. (2) have multiple local minima and are not well behaved.
Hence, these methods are dependent on the presence of good
initial conditions, and might converge to a local minima or
even to an infeasible solution if we do not reinitialise.

Our Contribution: The central observation of this paper
is that the underlying parameter space of the matrix R is con-
strained and is given by the product manifold of the Special
Euclidean (SE3) group. We can not only alleviate poor con-
vergence properties of Eq. (2), but also enforce the proper
geometric structure on Eq. (2), by the following minimisa-
tion reformulation:

minf f(R, S) = ||W� (P− RST )||2F
subject to R ∈ SE3 × · · · × SE3| {z }

F times

(3)

Standard constrained optimisation approaches like La-
grange multipliers are not suitable for our task. Even though
they enforce constraints by clever algebraic manipulations
(using projection operators) they are unmindful to the geo-
metric properties of the constraint set. For example, while
using an quaternion parametrisation, a Lagrange multiplier
has to added to ensure unit norm constraint. This constraint
is purely algebraic and synthetic in nature. An axis-angle
or infinitesimal rotation based parameterisation [9] merely
gives us a first order linearlisation of the rotation matrix. The
ambient structure of the manifold is not accounted for when
calculating the derivatives of the cost function.

In this paper, we solve Eq. (3) by making use of the re-
cently proposed geometric optimisation technique [3], which
is able to perform the minimisation in Eq. (3) directly on the
constraint manifold. Our novel algorithm is an iterative bi-
quadratic algorithm, where R is updated using Gauss/Newton
update on the smooth manifold formed by the N-fold prod-
uct of special Euclidean group, whereas S is updated using a
second order update [6].

Notation: All matrices are type-set with capital letters
with type writer font (e.g., A) , vectors with bold serif font
(e.g., a) and scalars with normal math fonts (e.g., a). If A

is a m × n matrix, then vec(A) is a mn × 1 vector formed by
writing down the columns of A one at a time. ⊗ indicates the
Kronecker product.
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2 Our Method

The algorithm presented in this paper uses a coordinate
descent optimisation scheme, where rotation (R) and shape
(S) are updated alternatively while keeping the other term
constant. Our point of departure with other coordinate ap-
proaches used to solve the SfM factorisation problem is that
both the R and S updates are quadratic and not linear. This
bi-quadratic updates do more justice to the cost functions
defined in Eq. (2) and Eq. (3) which are quartic in nature.
The bilinear update previously reported in the literature [7]
linearises Eq. (2) and gives an approximate solution only.

A summary of the algorithm is given below

Algorithm 1 Overview of our algorithm
1: Initialise R and S using the method given in [8]
2: repeat
3: Minimise fS(R) = vecT (R)A vec(R) + B vec(R) + C sub-

ject to R ∈ SEF3 and assuming S is constant by using
the method explained in §Sec. 3, where
A = (Γ⊗ ST )Q(ΓT ⊗ S) B = 2 vec(PT )Q(ΓT ⊗ S)

C = vecT (PT )Q vec(PT ) Q = diag(vec(WT ) vecT (WT )

R = ΓTRT ΓT = IF ⊗
"

1 0 0 0

0 1 0 0

#
4: Update Shape parameters by minimising fR(S) =‚‚vec(H)�

`
vec(P)− (In ⊗ R) vec(ST )

´‚‚2

F
using Wiberg

update [6]. {Due to space limitations we do not further de-
velop shape updates here. More details are available at http:
//www.cse.iitb.ac.in/appu/icprAM/}

5: until convergence

3 Optimisation on a Manifold

We address the rotation update as an unconstrained op-
timisation problem on a constraint manifold (product mani-
fold of special Euclidean manifold in our case). A traditional
unconstrained or constrained optimisation methods perform
searches in RN where N is the dimensionality of search
space, using iterative steps of the form xk+1 = xk + aωK ,
where xk is the k-th iterate, a is a positive scalar, and ωk is
the descent direction. The descent directions are computed
using first and (possibly) second order derivatives at the cur-
rent location. To generalise the optimisation to manifolds.
we need mechanism to calculate the gradient and Hessian on
manifold. Further, while generalising the Newton update, we
must ensure that any iterate xk+1 should lie on the manifold
surface.

In our method, at each iterate, an Euclidean local param-
eterisation of the manifold is constructed (Eq. (5)). We carry
out the optimisation of the local cost function in that param-
eter space. The descent direction and the step size are com-
puted with the aid of the local versions of the Jacobian and
Hessian (see Eq. (7)). We then project the optimal vector
back to the manifold (see Fig. 1).

Figure 1. The mapping µR is the local parametrisation of SEF3
around point R such that µR(0) = R. f is a smooth function

defined on SEF3 and f ◦ µR is f expressed in local parameter

space R6F

The matrix R in Eq. (3) comprises of stacked motion ma-
trices ∈ SE3 (Special Euclidean space). Hence, the space of
R matrices build from observations from F frames is a sub-
space on the SEF3 product manifold. SE3 forms a Lie group
of six dimensions with the usual matrix multiplication. Man-
ifolds induced by Lie Groups have the added advantage that
they are smooth and their Lie algebra describes the tangent
space at the identity of the matrix Lie group.

The Lie algebra of SE3 is denoted by se3. There is a well
know isomorphism from R6 to se3 given by the mapping Ω

Ω(x) =

"
[ω]x v

0 0

#
where ω,v ∈ R3, [ω]xis a skew symmetric matrix

Tangent Space: It can be trivially show that the affine
tangent space of a point R ∈ SEF3 is given by

T aff
R SEF3 = R+RΩ̃, where Ω̃ = Ω1 ⊕ Ω2 ⊕ · · · ⊕ ΩN ,

Ωi ∈ so3 and ⊕ denotes the direct sum operator

Local Parametrisation: Let N(O) ⊂ R6F denote a suffi-
ciently small open neighbourhood of the origin in R6F . Then
the exponential mapping

µ : N(0) ⊂ R6F → SEF3 , x→ ReΩ(x) (4)

is a local diffeomorphism from N(0) onto a neighbourhood
of R in SE3.

The cost function fS(R) (Alg. 1 , step 3 ) at R ∈ SEF3 (see
Fig. 1) expressed in local parameter space using the smooth
local parametrisation µR is given by

f ◦µR(ω) = vecT (ReΩ̃(ω))A vec(ReΩ̃(ω))−B vec(ReΩ̃(ω)) +C (5)

Notice that this function is no longer quadratic. We obtain
a quadratic approximation of Eq. (5) by taking its second
order Taylor approximation.

T (f ◦µR) : (f ◦µR)(tµ) +
d(f ◦ µR)(tµ)

dt
+

1

2

d2(f ◦ µR)(tµ)

dt2

˛̨̨̨
t=0

(6)



Figure 2. Our algorithm first maps a point RK ∈ SEK3 to an el-

ement of the affine tangent space T aff
Rk
SEK3 via π1 followed by

step π2 to project the vector back to manifold

Jacobian and Hessian for this quadratic approximation
(after omitting the copious algebra) is given by

∇f◦µR (0) = JT (I⊗ RT )(A vec(R)−
1

2
BT ) (7)

Hf◦µR (0) = JT (I⊗RT )A(I⊗RT )J + JT (I⊗RT C)J (8)
where vec(Ω̃) = Jx; x = (ωTvT )T

A pictorial representation of the algorithm is given in
Fig. 2 The optimal descent direction (in spirit of the clas-
sical Newton’s algorithm) is set to be −H−1

f◦µR
∇(f ◦ µR), rep-

resented by πa1 (step 1 in Fig. 2). This is followed by a one
dimensional backtracking based inexact line search by main-
taining the Wolfe condition [2] that ensures reduction in cost
function (π1; step 2 in Fig. 2). Once the descent direction
and downhill step size is obtained we map the resulting point
back to the manifold via the push forward to the manifold
using the exponential map operator(π2; step 3 in Fig. 2).
The above algorithm has quadratic convergence near a criti-
cal point [3]. The complete mathematical exposition for the
algorithm is given at http://www.cse.iitb.ac.in/
appu/icprAM/

4 Experiments and Results

Simulations: All simulations are carried out in Matlab.
Each trial consists of the following:

• Randomly assign nearest integer values in the range
(20, 100) to F , the number of frames and (20, 100) to N ,
the number of points. Note: we enforce N < F .

• F different rotation matrices are created by randomly
assigned Euler angles and translation components.
These are stacked to form R4F×4 and R2F×4. Matrix
SN×4 is populated with random data.

(a) Input Sequence: Frame 1, 9,18, 27 and 36

(b) Reconstructed shape rendered from novel viewpoints

Figure 3. Toy Dinosaur sequence reconstruction

• Set P as RST , Also record the ground truth Pground truth as
RST

• Mask the band diagonal entries (W). The band width is
randomly chosen between (1,min

“
2
3
F, 2

3
N)
”

• Perform the Optimisation Algorithm.

• We compute two error terms. The cost function error
is given by the value of Eq. (2). The ground truth er-
ror measures the sum squared error between the recov-
ered motion estimate and the actual 3D-error, defined as
||Pground truth −RreconstructedS

T
reconstructed||2F . We are more interested

in the ground truth error, rather than the cost function
error, but the latter drives the convergence

Real Data: We test our method with the toy dinosaur
data [1] mounted on a rigid turntable. The toy dinosaur is
tracked with a standard KLT tracker. The observation matrix
thus created is 72×319 with only 28% of the measurement ma-
trix populated. Our reconstruction is shown in Fig. 3. The
rendering method used is similar to the one proposed in [5]

Quantitative Analysis: The central purpose of our simu-
lations are to verify our claim that the constrained optimisa-
tion specified in Eq. (3) minimised by an algorithm which is
sensitive to the geometrical structure is a better formulation
for solving factorisation based SfM rather than its uncon-
strained counterpart (Eq. (2)).

We compare our algorithm with the damped Newton al-
gorithm introduced in [1] which is one of the best know min-

Matrix Size SE3-I DN-I SE3-C DN-C
25× 25 0.2727 0.3590 0.2727 2.9695
50× 50 1.4211 0.8226 2.8423 11.2063

100× 100 5.0469 2.0734 10.0938 22.4077
125× 125 12.0937 2.4959 24.1875 37.2671
150× 150 76.3279 4.8076 76.3279 53.1265

Table 1. Timing Comparison (All entries are in seconds), SE3-I:

Time per iteration for our method, DN-I: Time per iteration for

the damped Newton method, SE3-C: Time till convergence for

our method, DN-C: Time till convergence for the damped Newton

method



imiser of Eq. (2). We affine correct the output of the damped
Newton algorithm so as to build proper rotation matrices us-
ing the method specified in [8]. 1250 different instances
of the simulation are carried out. Both the methods are ini-
tialised by the same R and ST matrices and a maximum itera-
tion limit of 30 is specified.

The relative performance of the algorithms in terms of
ground truth error are shown in Fig. 4(a). The scatter plot
is divided into three regions, the region inside the two blue
lines and the regions above and below it. The data points
within the blue lines represent the instances when the perfor-
mance of both the algorithm are similar (error within a stan-
dard deviation of 10%), while the region above it represents
the instances when our algorithm perform worse than the
damped Newton method. Notably the region below repre-
sents the instances when our method yields better solutions.
It was observed that our method performed better in 34.72%
instances, the performance of the algorithms were similar in
59.68% instances and 5.6% instances we got inferior results.
The number of data points below the red dotted line (which
gives a hard threshold) constituted 71.28% of the total in-
stances.

Fig. 4(b) which is an error-bar plot of Ground Truth Error
for 50 different instances of the simulation. The top figure
(data plotted in red) shows the behaviour of our algorithm
whereas the bottom figure (data plotted in blue) shows the
behaviour of the damped Newton algorithm. The vertical
bars in the plot represents the standard deviation whereas the
single continuous line represent the average error. We ob-
serve an asymptotic convergence pattern for our algorithm,
with a relatively low band-limited set of standard deviations.
However, the behaviour for the damped Newton case is er-
ratic with high standard deviation terms.

Sensitivity Analysis: We fix F ← 60 and N ← 40. The
percentage of missing components is varied from 5% to 30%.
The simulation is repeated 100 times while fixing the value
of missing components. An error bar plot with half of stan-
dard deviation as the vertical lines and average ground truth
error value as the single continuous line is given in Fig. 4(c).
It is observed that our method is relatively insensitive to
missing data with respect to the ground truth error than the
damped Newton data.

Timing and Convergence: Our algorithm usually con-
verges within first 3-6 iterations, while the damped Newton
case usually takes about 10-20. We state candidly that cost
per iterate of our method is greater than the damped Newton
case (Table 1). However this is compensated by the fact that
the number of iterations required for convergence is much
lower than the damped Newton case. For example, we have
faster convergence timing in the first four cases at Table 1.
The relatively poor running time in the last case is due to the
exponential map operator, and also due to the larger matrix
dimensions as the result of the Kronecker product.
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Figure 4. Quantitative justification for our method.

5 Final Remarks
The best factorisation method for recovering three di-

mensions in the presence of incomplete and incorrect two-
dimensional input data relies heavily on non-linear optimi-
sation. In contrast with other methods that do not pay too
much attention to the geometrical properties, we show how
to perform the optimisation on the SE3 manifold (induced by
the rotation matrix). As a result, every step in the iterative
process represents a valid geometrical solution.
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[4] Y. Ma, J. Kos̆ecká, and S. Sastry. Optimization criteria and geometric algorithms
for structure from motion and structure estimation. International Journal of Com-
puter Vision, 44(3):219–249, 2001.

[5] D. Martinec and T. Pajdla. 3d reconstruction by fitting low-rank matrices with
missing data. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 198–205, Washington, DC, USA, 2005. IEEE Computer Society.

[6] T. Okatani and K. Deguchi. On the wiberg algorithm for matrix factorization in
the presence of missing components. International Journal of Computer Vision,
72(3):329–337, 2007.

[7] H. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with missing
data and its application to polyhedral object modeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(9):854–867, 1995.

[8] C. Tomasi and T. Kanade. Shape and motion from image streams under orthog-
raphy: a factorization method. International Journal of Computer Vision, pages
137–154, 1992.

[9] B. Triggs, P. McLauchlan, R. I. Hartley, and F. A.W. Bundle adjustment - a modern
synthesis. Vision Algorithms: Theory and Practice, International Workshop on
Vision Algorithms, pages 298–373, 1999.


